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Abstract

As part of the George B. Moody PhysioNet Challenge
2022, we developed a computational approach to identify
abnormal cardiac function from phonocardiograms that
combines deep learning and traditional machine learning
methods. We adopted a supervised contrastive learning
and a deep convolutional neural network to obtain an em-
bedding of the phonocardiogram slice onto a unit hyper-
sphere in low-dimensional space. Thus, we applied the
obtained latent factors to classify patients using a Ran-
dom Forest model. The murmur detection classifier created
by our team CeZIS received a weighted accuracy score
of 0.756 (ranked 8th out of 40 teams) and Challenge cost
score of 11916 (ranked 4th out of 39 teams) on the hidden
test set.

1. Introduction

Non-invasive evaluation of the mechanical function of
the heart using a digital stethoscope and automatic eval-
uation of the phonocardiogram (PCG) can provide early
information about congenital and acquired heart diseases
in children. The George B. Moody PhysioNet Challenge
2022 [1] set the task of classifying patients according to the
presence of murmurs and overall clinical outcomes based
on PCGs collected from multiple auscultation locations.

2. Methods

For the classification of PCG recordings by the tradi-
tional machine learning methods, a set of the appropri-
ate features is usually described with the help of medi-
cal experts. The evaluation of these features often requires
segmentation of the PCG or its transformation to the fre-
quency domain. In our solution, we work only with the
raw unsegmented signal, from which we automatically ex-
tract latent factors for each PCG with a particular neural
network. Subsequently, the obtained latent factors can be
used by traditional machine learning methods to classify
patients.

2.1. Training Data

For training, we use only data from the Challenge
training set, which contained 3163 PCGs from 942 pa-
tients [2]. Basic demographic data (gender, age group,
height, weight, pregnancy status) and at least one record-
ing from at least one prominent auscultation location were
available for each patient. Four standard locations were
used: pulmonary valve (PV), aortic valve (AV), mitral
valve (MV), and tricuspid valve (TV). From the point of
view of the presence of murmur, patients were assigned
into three classes: Absent (695 / 73.78%), Present (179 /
19.00%), and Unknown (68 / 7.22%).

Regarding the original labels of patients and their aus-
cultation locations with observed murmur (attribute Mur-
mur locations in dataset), we proposed our own Murmur
label for each PCG (see Table 1). In more detail, the PCGs
of each patient with a murmur present are divided into two
subclasses according to whether a murmur was detected on
the PCG at the respective location.

Murmur label on PCG PCG count
A Absent 2391 75.59%
P1 Present at current location 499 15.78%
P2 Present only at other location 117 3.70%
U Unknown 156 4.93%

Table 1. Our proposed labeling of PCGs.

According to clinical outcome diagnosed by a medical
expert, the patients were divided into two classes: Abnor-
mal (456 / 48.41%) and Normal (486 / 51.59%). In most
cases, patients with the Murmur label of Present are as-
signed to the Outcome label of Abnormal. However, there
are 29 patients in the training set with the observed murmur
and the Outcome label of Normal. The number of patients
with the Outcome label of Abnormal is much higher than
patients with the observed murmur. Surprisingly, it cor-
responds to almost half of a number of the children who
participated in the screening.

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.067



2.2. Contrastive Learning

Recently, contrastive learning (e.g., SimCLR frame-
work [3]) has become popular in the field of supervised
representation learning. Two stochastic data augmenta-
tions are used to transform each sample within a batch,
yielding two correlated views of that sample. Thus, with
the help of a particular contrastive loss function, an em-
bedding on the unit hypersphere is found, which ensures
that each selected sample from the batch (anchor) is close
to the paired view in the embedding space and, conversely,
is far from the other sample views in the batch.

A similar concept can be fruitfully applied in a fully su-
pervised learning scenario where labels can be used. The
SupCon loss function [4] ensures that for each selected an-
chor, other samples from the same class in the batch are
located in the embedded space nearby, while samples from
others classes are located much further away (Figure 1).
The obtained embedding can be used to solve the original
classification task, but also for downstream tasks.
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Figure 1. The concept of supervised contrastive learning.

By adapting the concept of supervised contrastive learn-
ing (SupCLR) for PCGs, we obtain an embedding for a
short PCG (approximately 8 seconds) onto the unit hyper-
sphere in a low-dimensional space (dim = 16). The in-
put is a raw PCG signal resampled to 1000 Hz with min-
imal preprocessing further processed by a deep convolu-
tional neural network (CNN). The backbone of the CNN
is a one-dimensional variant of the ResNet50 network [5]
with a reduced number of virtual channels (width = 1/4),
to the output of which L2 normalization is applied. Thus,
for each PCG slice, we obtain its embedding onto the unit
hypersphere in 512-dimensional space. Subsequently, a
projection head is added, which maps the 512-dimensional
space to the 16-dimensional space. In our solution, the pro-
jection head contains only one simple linear layer without
hidden layers and non-linear activations. The L2 normal-
ization is then used again to embed the PCG slice onto the
unit hypersphere in 16-dimensional space. The architec-
ture of the solution is shown in Figure 2.
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Figure 2. Neural network architecture of our solution.

For contrastive learning, only PCGs with murmur labels
A (Absent) and P1 (Present/Murmur location) described
in Section 2.1 are used. The label P2 is omitted due to
its higher difficulty of the correct classification in compar-
ison with the label A. Moreover, for the patient labeled
Unknown, it is not clear whether all his/her PCGs are tech-
nically problematic or only some of them. Thus, the label
U is excluded from the contrastive learning, as well.

In this way, a binary classification task with clearly sep-
arable classes was obtained. One class includes the PCGs
without murmur and the other contains the PCGs with an
audible murmur. In comparison with [4], the size of the
batch is not doubled during training. Due to the sufficiently
large batch size (512), there are always at least two sam-
ples from the minority class in the batch. We trained the
model using the AdamW optimizer with a weight decay of
0.0005 and the OneCycle learning rate [6] schedule with a
maximal learning rate of 0.02 total of 100 epochs.

2.3. Patient Classification

In our solution by supervised contrastive learning de-
scribed in the previous section, we constructed 16 la-
tent factors for each PCG lasting approximately 8 sec-
onds. These factors are further used to create an additional
dataset to train patient classification models.

PCGs in the training set range in length from approxi-
mately 5 seconds to more than 64 seconds. For each PCG,
10 different slices (offsets) are defined with a length of ap-
proximately 8 seconds. The offsets are evenly distributed
over the entire length of the PCG with overlap. If the PCG
is shorter than 8 seconds, the signal is padded with varying
numbers of zeros on the left and right, such that the non-
zero part is gradually shifted from left to right. For each
patient, the 10 views corresponding to the offsets are used
for data augmentation (Figure 3).

For each patient view, we created the explanatory vari-
ables shown in Table 2. Since the PCGs entering the CNN
are standardized, the latent factors do not contain infor-
mation about the mean and standard deviation (StDev) of
the signal. The values of the demographic variables are
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Figure 3. PCG slices for patient views.

constant for all views of the patient. However, the values
of the other variables can vary for each view. Thus, we
obtain a dataset with 77 explanatory variables, and the tar-
get variable Murmur with three classes (Absent, Present,
Unknown). We multiplied the number of dataset rows 10
times the number of patients. Thus, we obtained more
samples for training to prevent overfitting. We also applied
views for predicting a patient label by the arithmetic mean
of predicted probabilities from all patient views.

Explanatory variables Locations Count
16 latent factors from SupCLR 4 64
Mean and StDev of the PCG slice 4 8
Patient demographic data - 5

Table 2. Explanatory variables for patient classification.

We did not solve the given classification task as multi-
class task. However, we divided the task into two subse-
quent binary classifications (Figure 4):
1. Present vs. others (Absent, Unknown) – to separate
the patients with the original Murmur label of Present.
2. Unknown vs. Absent – the additional classification for
other values of the original Murmur labels of the patients.
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Figure 4. Subsequent classification steps.

We selected the well-known and popular Random Forest
(RF) method to solve the classification tasks. We applied

its ”balanced” version [7] implemented in the python li-
brary imbalanced-learn [8], which allows setting the num-
ber of randomly selected samples for each class. By a grid
search method, we found the optimal values of the follow-
ing hyperparameters for each classification:

• The ratio of samples selected from the positive and neg-
ative classes for building the tree;
• Probability threshold for positive class prediction.

With these hyperparameters, it is possible to influence
the number of predictions into the positive class so that the
highest possible value of the metric (weighted accuracy in
this case) is achieved.

For the Outcome label, PCGs are divided into two
classes based on whether the patient’s label is Abnormal or
Normal. Using these labels on PCG along with supervised
contrastive learning, 16 new latent factors are obtained.
For patient classification, an auxiliary dataset is created
similarly as for the Murmur label, it differs only in 16 vari-
ables corresponding to new latent factors. For this binary
classification, only one balanced RF is created. By the grid
search, the values of the hyperparameters were chosen to
get the lowest possible value of the special metric defined
as the average price for the diagnosis and treatment of one
patient using the given model for patient pre-screening.

3. Results

The quality of the trained models was evaluated using
10-fold cross-validation (CV) on the training set. We di-
vided the patients into 10 folds stratified by both target
variables: Murmur and Outcome. For evaluation objectiv-
ity, we ensured that all data of the same patient were in the
same fold, even if he/she participated in both campaigns
and was assigned two patient identifiers.

For each fold from the 10-fold CV, a model including
one CNN and one or two RFs was created. For prediction
on the validation and test set, an ensemble model consist-
ing of all these 10 models was used to obtain the final pre-
diction by applying their voting. Thus, one PCG from each
standard location was considered for patient label predic-
tion, while 10 offsets were considered for each PCG, and
the prediction was obtained using 10 CNNs for each offset.

3.1. Murmur Label

To evaluate the Murmur label prediction, a weighted ac-
curacy metric was used, with the weights 5, 3, and 1 for the
classes Present, Unknown, and Absent, respectively. The
values achieved on the training, validation, and test set are
shown in Table 3. For the training set, the mean and stan-
dard deviation obtained from CV are shown, and for the
test set, the ranking among all teams is also displayed.
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A more detailed study of the confusion matrix indicates
that the created model has the highest error rate when clas-
sifying PCGs from the Unknown class.

Training Validation Test Ranking
0.804± 0.037 0.796 0.756 8

Table 3. Results for Murmur label using weighted accu-
racy metric score.

3.2. Outcome Label

The metric for the Outcome label was defined as a price
that includes the costs of algorithmic pre-screening, expert
screening, treatment, and diagnostic errors that result in
late treatments. The achieved results are shown in Table 4.

Training Validation Test Ranking
10984± 1067 9479 11916 4

Table 4. Results for Outcome label using Challenge cost
metric score.

The analysis of the confusion matrix in this binary clas-
sification shows a high error rate of the model. Due to the
inaccuracy of the model and the high cost of late treatment,
the model predicts a very large proportion of patients as
Abnormal and refers them to experts for examination.

4. Discussion and Conclusions

The applications of contrastive learning in the health
care area can be beneficial in several ways. In the case of a
sufficient amount of data, but for which labels from med-
ical experts are not available, self-supervised contrastive
learning can be used to obtain an appropriate data repre-
sentation. Our presented solution indicates that contrastive
learning can be successfully applied in a fully-supervised
setting even with a smaller amount of data, as well.

In the first task, it was possible to create models that dis-
tinguish the presence and absence of murmur quite well.
Since the identification of the Unknown class seems prob-
lematic, we see the potential for algorithm improvement in
the addition of a special evaluation of the technical quality
of the recording before the murmur identification.

The second task of predicting the clinical outcome ap-
pears to be more demanding and the created models are
very inaccurate. The difficulty of the task lies in the fact
that for patients marked as Abnormal, it is not clear on
which of their PCGs (if any) the anomaly identified during
the comprehensive examination manifests itself. In future,
it is possible to consider a one-class classification trained
only on patients marked as Normal.
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